An Iterative Based Novel Multi-nucleus Detection Scheme for Protozoan Parasite Microscopic Images
نویسندگان
چکیده
Protozoan parasites cause many diseases, such as malaria, EHEC infection, shigellosis, amoebiasis, etc. Different kinds and growing stages of protozoan parasites would lead to different treatments. The most significant characteristic of different growing stages is the number of nuclei. But some nuclei in a cell could be unclear causing the missing in nucleus detection.Common and traditional segmentation methods can not be used to obtain satisfied results directly. This paper presents a novel multi-nucleus detection scheme which is composed from adaptive protozoan parasite boundary erasure, iterative gamma equalization, two-means clustering algorithm, modified connected component detection method, and circle mask scoring method. Except the two-means clustering algorithm, all other parts are modified methods or new methods designed for nucleus extraction. Experiments show that the proposed scheme can detect the nuclei with indistinct boundaries effectively and can obtain better results than other commonly used image segmentation methods.
منابع مشابه
A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar
Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...
متن کاملChagas Parasite Detection in Blood Images Using AdaBoost
The Chagas disease is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi. Visual detection of such parasite through microscopic inspection is a tedious and time-consuming task. In this paper, we provide an AdaBoost learning solution to the task of Chagas parasite detection in blood images. We give details of the algorithm and our experimental setup. With ...
متن کاملChange detection from satellite images based on optimal asymmetric thresholding the difference image
As a process to detect changes in land cover by using multi-temporal satellite images, change detection is one of the practical subjects in field of remote sensing. Any progress on this issue increase the accuracy of results as well as facilitating and accelerating the analysis of multi-temporal data and reducing the cost of producing geospatial information. In this study, an unsupervised chang...
متن کاملIsolation and Purification of the Schizont Stage of Theileria annulata from Host Leukocytes through Novel Biochemical Techniques
The intracellular protozoan parasite, Theileria annulata, induces uncontrolled proliferation and transformation in bovine B lymphocytes and monocytes in blood circulation andlymph nodes of host cells. This uncontrolled replication happens in the macroschizont stage of the life cycle of the parasites. The development of a rapid and efficient technique is likely to necessita...
متن کاملA Novel Method for Skin Lesion Segmentation
Skin cancer has been the most usual and illustrates 50% of all new cancers detected each year. If they detected at an early stage, treatment can become simple and economically. Accurate skin lesion segmentation is important in automated early skin cancer detection and diagnosis systems. The aim of this study is to provide an effective approach to detect the skin lesion border on a purposed imag...
متن کامل